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Two-dimensional equations describing vortical flows in thin horizontal fluid layers 
are known as shallow-water equations [i]. These equations are valid for large-scale motions 
when the effect of nonuniformity of the flows in the vertical direction is unimportant. 
Attempts to more adequately describe horizontal layers within the framework of this approx- 
imation have led to a need to account for features of the structure of hydrodynamic fields 
across the layer. One method of deriving two-dimensional equations that describe essentially 
three-dimensional flows was developed in [2, 3]. In these studies, the hydrodynamic: fields 
were represented by a finite Taylor series in horizontal coordinates, while the transverse 
profiles of the fields were determined from exact similarity solutions of the initial equa- 
tions. 

The main velocity discontinuities are concentrated in viscous boundary layers formed 
near solid horizontal boundaries. The effect of asymptotically thin viscous boundary layers 
on the evolution of vorticity usually reduces to additional energy dissipation, which can be 
described by means of linear friction. It was shown in [4-6] that such a parameterization 
satisfactorily describes actual experiments in a nonrotating fluid. This includes the case 
of the presence of a transverse magnetic field, when a Hartmann boundary layer develops 
near the boundaries [6]. The obviousness of this proposition has led investigators to gen- 
eralize the linear friction model to rotating systems [i]. However, Ekman layers have sig- 
nificant differences from the boundary layers in nonrotating systems [7]. Specifically, the 
directions of motion of the fluid inside and outside the core of the flow do not coincide in 
the former case. It is shown below that this leads to transport of the vorticity of the 
average flow in the direction perpendicular to the direction of velocity averaged over the 
thickness of the layer. This effect makes the friction coefficient dependent on the rate of 
vorticalmotion and ensures the preferential propagation of cyclonic vortices (m/f > 0, where 
w is vorticity and f is the doubled frequency of rotation of the layer). The character of 
evolution of a specific vortex also depends on the local structure of the large-scale veloc- 
ity field present as the background when the vortex is generated. The dependence of the 
thickness of the Ekman layer on the local vorticity of the flow was noted in [B]. 

We will examine a thin horizontal layer of fluid rotating about a vertical axis with 
the angular velocity f/2. We write the equations of motion of the fluid as 

' ~ , v  + ( v . V ) v  + [ n  • v = - • - ~,n + ,, (A,~ + ~ , ~ ) ,  V . v  = O, ( 1 )  
P 

where v is the velocity with the components u, v, and w along the axes x, y, and z, respec- 
tively; n is the vector of a normal directed along the z axis; P is pressure; p is density; 
g is acceleration due to gravity; v is the viscosity coefficient. The following conditions 
are satisfied at the horizontal boundaries of the layer: 

l' -= u = w = 0 ,  z =: -0 ,  Ozu = Ozu == w = 0 ,  z = h .  ( 2 )  

Equations (i)are widely used in geophysics problems to describe motion in thin spherical 
layers of fluid on the surface of self-gravitating bodies when the dimensions of the region 
are considerably less than the radius of the sphere. In this case, the centrifugal forces 
are offset by the component of the gravitational field directed along the horizontal bound- 
ary, while the Coriolis parameter f is equal to the projection of angular velocity on the 
normal to the surface (the so-called f-plane approximation [I]). The adopted boundary con- 
ditions, excluding vertical velocity on the top free boundary, impose certain limitations 
on the characteristic times ~ and scales s of the processes in question. We actually ignore 
the motions connected with gravity waves on the surface of the fluid and motions whose scale 
is comparable to the thickness of the layer. Thus, 
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Due t o  t h e  n o n d e f o r m a b i l i t y  o f  t h e  t o p  b o u n d a r y ,  t h e  h o r i z o n t a l  v e l o c i t y  a v e r a g e d  
a c r o s s  t h e  l a y e r  i s  n o n d i v e r g e n t :  u = - a y e ,  v = 3x~ .  A f t e r  Eq .  ( 1 )  i s  a v e r a g e d  o v e r  z and  
p r e s s u r e  i s  e x c l u d e d ,  t h i s  f a c t  m a k e s  i t  p o s s i b l e  t o  o b t a i n  t h e  f o l l o w i n g  e q u a t i o n  f o r  v o r -  
ticity 

OtA* q- { , ,  A~} = v A e ,  + ~ .  ( 4 )  

2 2 
H e r e ,  { %  A , }  = 0 : , q ; 0 ~ A ~ -  0 ~ , 0 ~ k ,  a r e  P o i s s o n  b r a c k e t s ;  & = 3 x + ay  i s  t h e  t w o - d i m e n s i o n a l  
Laplace operator; ~ is a functional; 

h 

0 

To close (4), it is necessary to find the dependence of ~ on the stream function ~. In ac- 
cordance with [3], we introduce the small parameter 6 = h/s (where s is the characteristic 
horizontal scale of the flows being studied) and we expand the stream function into a Taylor 
series in the coordinates x and y. 

For large-scale flows (8 ~ i), to within 0(6 ~) we can limit ourselves to linear terms 
of the expansion. The structure of the flows u, v in this case is determined by the exact 
solution first obtained by Ekman. For boundary conditions (2), this solution has the form 

vj = -T- 0 v , ~  + e -h~v' q,2 cos --+- cea sin/r" + e h~/J' ----- c a , 4 c o s ~ +  q,a sin T , 

where k -l = hE/h is the relative thickness of the boundary layer; h E = /f/2v. The coeffi- 
cients c k are determined as 

2 q  = - -qOv~ + (t - -  ~e)O~, 2c2 = (1 - -  ~)0y~ - -  q0 , ,% 

2ca ' :  e,Ovq~.- (1 + e2)O~.~, 2ca - -  --(1 .+ ef)Ov~ - -  elO,.~, 

ee 1 := cos k sin k, gee ::= eh k sh k, e ~ cos 2 k che k + sin e k sh 2 k. 

The  s o l u t i o n  i s  v a l i d  when t h e  r o l e  o f  t h e  n o n l i n e a r  t e r m s  i s  s m a l l .  T h i s  s i t u a t i o n  c o r r e -  
s p o n d s  t o  t h e  r e q u i r e m e n t  Ro = U / f ~  ~ 1 ( w h e r e  Ro i s  t h e  R o s s b y  n u m b e r  a n d  U i s  t h e  c h a r -  
a c t e r i s t i c  velocity). This estimate is equivalent to condition (3), which follows from the 
requirement that the top boundary be nondeformable. Use of the Ekman solution for approxi- 
mation of the velocity profile makes it possible to calculate the functional ~ and close Eq. 
(4). For rapid rotation (k ~ I, or else a pronounced Ekman layer will be absent) we have 

v ( a , v , ) -  a , .  (5) = T  {% A~} + 

The first term makes a small addition to the nonlinear term in the left side of (4), while 
the other two terms are of the same order of smallness at A~ ~ f. Inserting of (5) into (4) 
yields 

a ,A ,  + v{*, a , }  = ~A~, - v •  (6 )  

Here, • is the nonlinear friction coefficient, connected with vorticity: • = ~(I -- ak~), where 
U = f/2k, y = I - 6/k, ~ = 4/f. At A~ ~ f, the coefficient • ~ and coincides with the 
usual parameterization of linear friction. 

Two effects follow from the form of Eqs. (6) and should be manifested in thin rotating 
layers of fluid. First, vortices of different signs are subject to viscous dissipation in 
the boundary layer to different degrees. This should result in the preferential propagation 
of cyclones (A~/f > 0). Second, the quantity • becomes negative for sufficiently intense 
cyclonic vortices, and this situation corresponds to the addition of energy to vortices of 
the given scale. It should be noted that both cyclone and anticyclone asymmetry and the 
intensification of large-scale vortices (known as the effect of negative viscosity [i]) take 
place in geophysical flows. 

In order to study the properties of the solutions of model equation (6), it is con- 
venient to change over to dimensionless variables. Here, we use V~7~, i/~, 9/~a as the units 
of measurement of length, time, and the stream function. Then (6) takes the form 

o ~  + ~ { , ,  ~} = V i v y - -  (t - -  ~) v~],  ~ = A ,  (7 )  
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(k is the inverse relative thickness of the boundary layer). The simplest solution of (7) 
describes flows with uniform vorticity, the magnitude of which depends on the time as ~ = 
~0[~0 + (I - w0)et-t~ -I, where ~0 is vorticity at the initial moment of time t = t o . Steady- 
state solutions exist only at ~0 = 0 and ~0 = i. If ~0~ (i, --oo), then vorticity decreases 
monotonically to zero, while at ~0 > i it becomes infinitely large in a finite period of 
time. The latter is evidence of the presence of a mechanism of instability and the possible 
existence of isolated vortex solutions. 

As can easily be checked by direct substitution, steady-state solutions of Eq. (7) 
satisfy the nonlinear two-dimensional Klein-Gordon equation 

= I + Ce-~ ( 8 )  

(where C is an arbitrary constant). 

If we limit ourselves to the case of unidimensional jet flows ~ = ~(y), then (8) can be 
integrated exactly: 

d ,  ( 9 )  
_+_+ V u= V 2 o-* 

Integral (9) is not expressed in elementary functions, but it nonetheless makes it possible 
to fully explain the properties of the solutions obtained here. In the given case of uni- 
dimensional jets, Eq. (8) describes cyclonic solitons existing against a background of flow 
with constant shear (m = i). For weak and strong perturbations, the structure of solitons 
is given by the following asymptotic expressions: 

~/, 2 
( o = ~ + ~ e  - ~ ' 2 ,  ~ = t +  2 , [~J<<~" 

Anticyclonic solutions are possible only in the presence of velocity discontinuities in the 
flow (~ = 1 - 2k 2 cos -2 ky). The characteristic scale of weak solitons is equal to unity, 
while for strong perturbations of the steady background flow (w = I) they are inversely 
proportional to the root of the amplitude of the perturbation. In dimensional variables, 
the characteristic scale of a solitary jet is equal to ~--~u, which corresponds to the scales 
of viscous boundary layers in ordinary shallow water [I]. It should be noted that the para- 
meter /~/~h 2, characterizing the relative dimensions of solitons, is much less than unity 
for laminar flows and much greater than unity when turbulent transport coefficients v = vt 
was used [i]. This suggests that the proposed theory might be valid for turbulent flows~ 

Let us now examine the effect of nonlinear vortical flow on the behavior of medium-scale 
turbulence in a rotating fluid layer. In the case when the layer is also turbulent through 
its thickness, the phenomenon of the transport of vorticity across streamlines remains in 
effect. The difference is that the quantiy k = h/h E is determined as the actually observed 
relative thickness of the turbulent Ekman layer. Turbulent flows of this type have relevance 
to geostrophic flows. 

Large-scale geostrophic turbulence is quasi-two-dimensional, but the presence of such 
specific factors as the S-effect, baroclinic distribution, and stratification make it diffi- 
cult to interpret its properties from the standpoint of two-dimensional turbulence [9]. The 
factor in question is in a certain sense the simplest factor - it is connected only with dis- 
sipative effects at the boundary and is manifest in any rotating layer. 

The effect of the linear dissipative term on the properties of two-dimensional turbulent 
flows has been studied previously by numerically modeling two-dimensional turbulence [i0]. 
Lilly [i0] demonstrated the possibility of obtaining an interval of entropy transfer to small 
scales with the spectral energy distribution E(k) ~ k -3 (where k is the wave number) in a 
system with linear friction. Sommeria [6] experimentally studied the effect of linear fric- 
tion on the inertial interval of energy transfer E(k) ~ k -Sis with the inverse energy cascade 
characteristic of two-dimensional turbulence. Conducting tests involving the placement of a 
layer of mercury in a transverse magnetic field, Summeria [6] not only established the pres- 
ence of an inverse cascade, but also obtained the dependence of the Kolmogorov constant on the 
magnitude of the linear friction determined by the magnetic field. 

Thorough study of the properties of turbulent regimes associated with Eq. (6) requires 
the realization of numerical experiments on supercomputers and is not part of the goal of the 
present investigation. At the same time, some of the common properties of uniform turbulent 
flows that can be described by such equations can be examined on the basis of simple small- 
parameter models. 
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The main features of processes involving redistribution of energy between motions taking 
place at different scales can be described by means of cascade equations for collective vari- 
ables Ai, each of which characterizes the pulsations of the velocity field in a certain in- 
terval of wave numbers. Cascade equations minimize the number of dimensions of systems that 
describe turbulent flows within a wide range of wave numbers. These equations have the form 

OtA~ = ~ X ~ : ~ A j A I ~  + I:iA~ +/~, (10) 
jh 

where fi characterizes the energy sources in the respective intervals of the spectrum. 
Cascade models of the type in [i0] have been constructed by a number of investigators (see 
[11-13], for example). While differing in the methods of subdivision of the wave-vector 
space and determination of the variables Ai, the restrictions imposed on triad interactions, 
and other details, these models retain the basic properties of the initial equations of mo- 
tion of the fluid: they satisfy the conservation laws in the nondissipative limit and ade- 
quately describe nonlinear interactions between modes. 

One method of obtaining Eqs. (i0) consists of the following [13, 14]. The space of wave 
numbers is divided into octaves ki = 2ki- I, and two-dimensional turbulent eddies are described 
by means of basis functions ~i(r--rl) such that their spectrum is localized in the correspond- 
ing ring ki_1< Ikl<k i. Here, ri is the position vector of the center of the vortex, with an 
increase in the subscript i by unity corresponding to halving of the size of the vortex. We 
have the following for a fixed triad of vortices and initial equations (6) 

y~ = j A~[vA2~i--FA~d dr, 

xi.;k = - -  S A~i  [y {~j,  A~h} + ~ (A~jA~h + V~.iVA~h)] dr. 

The quantity A i is a collective characteristic of all vortices of the i-th dimension. Thus, 
the energy density for vortices of this scale E i = <A~>. The elements Of the matrix Xijk are 
determined from the mean-square values of xijk obtained for all possible mutual locations of 
the vortices i, j, k and from the conditions of energy and entropy conservation in the in- 
viscid limit [15]. 

The characteristic differences between the turbulent regimes of Eqs. (6) and ordinary 
shallow water can be discerned from the form of the matrix Xijk in the respective cases. The 
structure of the matrix is illustrated in Fig. i, which shows the central part of the matrix 
for i = 0 (the remaining elements can be obtained from the relation X~j~ = 2~Xoj_i.h_i) [13]. 
The left side of the matrix describes the behavior of two-dimensional turbulence [15] and at 
Yi = 0 satisfies energy and entropy conservation conditions (i0). It should be noted that the 
matrix contains no diagonal terms, i.e., the elements of the matrix are equal to zero when any 
pair of induces coincides. 

With Yi ~ 0 but a value of zero for ~, Eqs. (i0) describe two-dimensional turbulence 
with linear friction. The spectral properties for this case are shown in Fig. 2. If motion 
is excited at scales characterized by the wave number k*, a spectrum of the form E(k) ~ k -a 
is established to the right and is accompanied by transport of vorticity to small-scale mo- 
tion. At the same time, an inverse energy cascade with the distribution E(k) ~ k s/a is real- 
ized for k < k*. The energy reaches a maximum value at k = k **. The position of the maximum 
is determined by the power of the energy sources and the efficiency of the linear friction. 
In the low-frequency part (k < k**), the spectrum approaches the relation E(k) ~ k. 

192 



~E 

1 i - -  I j 

Fig. 2 Fig. 3 

The second part of the matrix Xijk becomes important at ~ ~ 0 (see Fig. i). The most 
important elements of this part are the diagonals Xiji, which rapidly move toward the asymp- 
tote X0j0 = i.i~ with an increase in the difference i - j. With allowance for the real- 
istically attainable relations between the coefficients ~ and X, the remaining elements of 
the matrix are unimportant and are omitted from Fig. i. 

The numerical solution of Eqs. (i0) for different values of ~ showed that the integral 
properties of turbulent flows depend weakly on ~. With an arbitrary set of signs for the 
variables Ai,, the equations still allow a solution corresponding to the law E(k) ~ k -~ and 
an inverse energy cascade is still realized at k < k*. A maximum remains in the time-aver- 
aged spectra, the position of this maximum being nearly independent of ~. At the same time, 
the local properties of the flow under significant changes. 

In regimes corresponding to developed turbulence, Eqs. (i0) have no stable steady-state 
solutions. The values of A i undergo random oscillations, while the spectral distributions 
are obtained by calculating the time-averaged values of <A~> [13, 14]. A specific vortex 
evolves in the flow against the background of total vorticity created by all of the large 
vortices. If we allow for this effect, we obtain a nondecreasing diagonal Xiji in (i0). 
This in turn leads to a situation whereby the character of development of the given quantity 
A i depends to a significant extent on how the directions of rotation are composed, i.e., on 
the signs throughout the chain of Aj for j~i. At moments when the chain is made up of 
positive Aj, the vortex may receive an appreciable portion of energy. When negative values 
predominate, there is an increase in energy dissipation. 

Figure 3 shows sample calculations corresponding to the excitation of large-scale mo- 
tion. At ~ = 0, the regime established in the system yields a spectrum which is close to 
the law k -3 (solid line) within a considerably broad range of wave numbers k > k*. The 
dashed line shows one of the motion energy surges obtained in the intermediate scales for 
the same conditions of pumping of energy into the motion and ~p = 0.i. The time peaks in the 
solution of the cascade equations correspond to pronounced spatial alternation of the flows 
described by Eq. (6). 

The results obtained here are consistent with generally accepted reprsentations on 
the character of geostrophic turbulence [i, 9]. An inverse cascade of energy to the macro- 
scales takes place in the flow, but this phenomenon does not determine the dynamics of the 
energy-containing structures of the mesoscales. The fact of the mesoscales is determined 
in large part by the specific structure of the large-scale field of vorticity. Here, the 
vortices which develop are primarily cyclonic in character. 
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SLOW MOTIONS OF A SOLID IN A CONTINUOUSLY STRATIFIED FLUID 

V. A. Vladimirov and K. I. Ii'in UDC 532.5 

The problem of the motion of a solid in a fluid of nonuniform density (stratified) is 
a particularly difficult and intensively investigated one [i]. The almost total absence of 
exact solutions has led to a great deal of work on the development of linear-approximation 
models [2-5]. 

Again in the linear approximation we have constructed particular solutions of the flow 
problem for the slow motions of a three-dimensional or two-dimensional solid in an ideal 
incompressible stratified fluid. The shape of the body and its direction of motion may be 
arbitrary, and the dependence of the velocity on time t has a special form [proportional to 
exp (st) with constant ~ > 0]. A new method of constructing the solution is proposed. It is 
based on the following remarkable fact: by direct transformation the problem can be reduced 
to the classical problem of the potential flow of a homogeneous fluid past some other fic- 
titious body. This equivalence makes it possible to calculate the velocity and resistance 
fields in the stratified fluid. And the formulas for the resistance are simple analytic 
expressions. 

The limiting solutions as ~ + 0, which are of interest from two points of view, have 
been studied in detail. First, they correspond to the important practical case of uniform 
motion, and, second, they coincide with the solutions of the problem of the instantaneous 
setting in motion of a body initially at rest. At the same time, the problem of impulsive 
motion, previously considered in various particular formulations [3, 5], has been solved in 
general form. The calculations showed that the limiting (~ + 0) flows have a characteristic 
layered structure. The vertical velocity component is equal to zero, and the fluid moves 
in horizontal layers (z = const). In all cases the resistance to the uniform motion of a 
three-dimensional body (less the buoyancy force) is equal to zero, which gives a result 
analogous to the D'Alembert paradox. For a two-dimensional body a fundamentally different 
answer is obtained: in the limit as ~ + 0 the resistance is finite for both horizontal and 

vertical motion. 

Thus, a number of general results relating to low Froude number regimes have been ob- 
tained for stratified flow past a body. The analogous problem of the motion of a body in a 
rotating fluid was solved in [6]. In the light of the analogy between stratification and ro- 
tation [7, 8] our results are a development of the approach adopted in [6]. 
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